ELSEVIER

Contents lists available at ScienceDirect

The Journal of Nutrition, Health and Aging

journal homepage: www.elsevier.com/locate/jnha

Review

Improving sarcopenia in older adults: a systematic review and meta-analysis of randomized controlled trials of whey protein supplementation with or without resistance training

Ming-Lin Li^a, Fei Zhang^a, Han-Yong Luo^a, Zi-Wei Quan^a, Yi-Fei Wang^a, Le-Tian Huang^{b,*}, Jia-He Wang^{a,*}

- ^a Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- b Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China

ARTICLEINFO

Keywords: Sarcopenia Older adult Whey protein Resistance training Randomized controlled trials

ABSTRACT

Objectives: The aim of the study was to comprehensively analyze the effects of whey protein (WP)-enriched supplement intake with or without resistance training (RT) in older patients, either from the community or hospital, who were diagnosed with sarcopenia according to the EWGSOP or AWGS criteria.

Methods: This meta-analysis study was registered in PROSPERO (CRD42023407885). We searched the PubMed, Embase, Web of Science, and Cochrane Library databases for RCTs up to June 1, 2023. Standardized mean differences (SMD) with 95% confidence intervals (CI) were used to estimate the pooled results.

Results: Ten RCT studies, including 1154 participants, were included and analyzed. The primary outcomes were the changes in muscle mass, strength, and physical performance. In WP group versus (vs.) Isocaloric placebo (PLA)/Routine consultation (RC) group, WP significantly increased the appendicular skeletal muscle mass index (SMD: 0.47, 95%CI: 0.23, 0.71), appendicular skeletal muscle mass (SMD: 0.28, 95%CI: 0.11, 0.45) and gait speed (SMD: 1.13, 95%CI: 0.82, 1.44) in older patients with sarcopenia. In WP with RT group vs. PLA/RC group, there was significant increase in handgrip strength (SMD: 0.67, 95%CI: 0.29, 1.04). In addition, in the secondary outcomes, WP significantly reduced interleukin-6, significantly increased insulin-like growth factor-1 and albumin, promoted participants' intake of total energy and protein, enhanced activities of daily living scores in patients, and had no significant effect on BMI, weight, or fat mass.

Conclusion: This review confirms that WP can improve various aspects of older adult with sarcopenia, thereby enhancing their overall physical condition. More studies should be conducted to validate this result and further explore the effects of WP and RT in patients with sarcopenia.

 $\begin{tabular}{l} @ 2024 The Authors. Published by Elsevier Masson SAS on behalf of SERDI Publisher. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). \\ \end{tabular}$

1. Introduction

Sarcopenia, an age-related syndrome, is characterized by reduced muscle mass, decreased muscle strength, and/or loss of physical function. Currently, there are at least eight accepted consensus criteria for

sarcopenia diagnosis within the scientific community [1], with varying diagnostic thresholds owing to differences in ethnic population characteristics [2–5]. The general understanding of sarcopenia encompasses three main aspects: muscle strength, mass, and function. Muscle strength can be measured using handgrip strength (HGS) and the 5-time chair stand test

Abbreviations: ADL, the Activities of Daily Living score; ASM, appendicular skeletal muscle mass; AWGS, the Asian Working Group on Sarcopenia; BMI, body mass index; Carbohydrate (g/day), carbohydrate intake per day; CI, confidence intervals; CRP, C-reactive protein; EWGSOP, the European Working Group on Sarcopenia; Fat (g/day), fat intake per day; FM, fat mass; FTCST, 5-time chair stand test; GS, gait speed; HGS, handgrip strength; IGF-1, Insulin-like Growth Factor-1; IL-6, Interleukin-6; OS, osteosarcopenia; PRISMA, Program Guidelines for Systematic Reviews and Meta-analyses; Protein (g/day), protein intake per day; Protein (g/kg/day), protein intake per kilogram (Kg) of body weight per day; RCT, randomized controlled trials; RoB2, the Cochrane Risk of Bias Tool 2; RT, resistance training; SD, standard deviation; SF-36 MCS, Short-form 36-item Health Survey Mental Component Summary scores; SF-36 PCS, Short-form 36-item Health Survey Physical Component Summary scores; SMDs, standardized mean differences; SPPB, Short Physical Performance Battery scores; TC, total cholesterol; TEI, total energy intake; WP, whey protein /whey protein-rich supplementation; WP with RT, combining whey protein-rich supplementation with resistance training.

E-mail addresses: letian91k@163.com (L.-T. Huang), wangjh1@sj-hospital.org (J.-H. Wang).

Corresponding authors.

(FTCST). Muscle mass can be assessed using methods such as bioelectrical impedance analysis, dual-energy X-ray absorptiometry, magnetic resonance imaging, and computed tomography to evaluate whole-body skeletal muscle mass (SMM), appendicular skeletal muscle mass (ASM), or the cross-sectional area of specific muscle groups or body regions. Physical function can be assessed through tests such as the gait speed (GS), short physical performance battery (SPPB), and timed-up and go (TUG) test [6]. Globally, 10–27% of older adults suffer from sarcopenia. Age-related inflammation, inactivity, malnutrition, and chronic diseases can exacerbate the condition [7,8]. However, there are currently no approved drugs specifically targeting sarcopenia [6]. Given the inevitability of aging and the growing population affected by sarcopenia, implementing essential interventions is paramount to alleviate the disease burden.

Sarcopenia can be ameliorated through dietary [9] and exercise [10] interventions [2]. Protein supplements are widely employed as a dietary intervention [11]. Consuming high-quality protein has proven to be beneficial for preventing muscle loss and maintaining healthy weight. However, the protein intake of older adults may not meet the optimal requirements for preserving SMM [12,13]. Whey protein (WP), casein, and soy protein are the three principal proteins that stimulate muscle protein synthesis [14,15]. WP is particularly effective at promoting systemic muscle protein anabolic metabolism [16] electing a more pronounced response compared to others [14,17]. Furthermore, it plays a proactive role in preventing and treating conditions such as type 2 diabetes [18], obesity [19], blood pressure regulation [20], antiinflammatory responses [21], and resistance to oxidative stress [22]. Because of its high digestibility, fast absorption rate, and rich essential amino acid content, WP has gained popularity as a nutritional supplement [23]. Exercise has consistently been demonstrated to improve muscle mass, strength, and physical function in older adults, particularly when individualized progressive long-term resistance training (RT) regimens are employed [24,25].

However, there are conflicting results regarding the role of WP supplementation alone [26–29] or WP with RT [2,3,30,31] in patients with sarcopenia. Recently, several meta-analyses relevant to our topic have been published, some of which specifically focus on the effects of WP supplementation [26,32,33], and another that includes comparisons of WP in combination with RT versus RT alone [34], all of which primary focused on muscle strength, muscle mass, and physical performance. Therefore, in addition to conducting separate analyses for WP supplementation, we also considered a combined analysis of WP with RT to explore potential synergistic effects that could substantially improve sarcopenia in older adults. Considering the complexity of sarcopenia and the impact of the aforementioned interventions on patients, our study used a comprehensive approach to evaluate multiple aspects of improvement in patients with sarcopenia after intervention. This included primary outcome analyses of muscle strength, muscle mass, and physical performance in patients with muscle wasting, in addition to secondary outcome analyses of inflammatory markers, nutritional intake, mental status, and certain basic physical indicators. Thus, our comprehensive approach facilitated the assessment of the overall impact of therapies beyond their conventional muscle-related effects.

2. Materials and methods

2.1. Guidance protocol

This review is reported in accordance to the Nutrition Research Guidelines [35], the Cochrane Manual of Systematic Reviews on Interventions [36], and the 2020 Preferred Program Guidelines for Systematic Reviews and Meta-analyses (PRISMA) [37,38] (Table S1 supplementary materials). We registered our protocol in PROSPERO (National Institutes of Health, International Prospective Systematic

Review Registry, https://www.crd.york.ac.uk/PROSPERO) under the number CRD42023407885.

The main processes of the literature search and selection, data collation, quality assessment, statistical analysis, and evidence grading for this review were conducted independently by two researchers (ML-L and LT-H), and disagreements were resolved through discussion and negotiation. In instances where no agreement was reached, a third researcher (JH-W) was involved in resolving the issues.

2.2. Literature search strategies

In this study, the Population, Intervention, Comparison, Outcome, Study Design (PICOS) model was utilized to formulate the search strategy as follows: (i) 'Population (P)' pertains to older patients diagnosed with sarcopenia without pre-existing heart, kidney, or liver disease, or any other disease or condition that might affect the results of the study; (ii) 'Intervention (I)' refers to the intake of WP with or without RT in the experimental groups, and the consumption of isocaloric placebo supplements (PLA) or a routine consultation (RC) in the control groups; (iii) 'Comparison (C)' refers to the contrasts between the experimental and control groups, or within the experimental groups themselves; (iv) 'Outcome (O)' encapsulates changes in muscle mass, muscle strength, physical performance, laboratory indicators, general anthropometric parameters, and nutritional intake metrics in patients with sarcopenia; and (v) 'Study Design (S)' involves randomized controlled trials (RCT). Advanced searches in the PubMed, Embase, Web of Science, and Cochrane Library databases were performed for RCT published until June 1, 2023, followed by a subsequent search on June 20, 2023, to avoid omitting newly published research. The complete search strategy and terms used are listed in Table S2. To broaden the search scope, relevant studies were selected from the 'similar articles' listed in databases, and manual searches were conducted on the references cited in the chosen articles.

2.3. Eligibility criteria and study selection

Eligible studies met the following inclusion criteria: (i) RCT published in English; (ii) participants in the study were \geq 60 years old and diagnosed with sarcopenia according to the European Working Group on Sarcopenia in Older People (EWGSOP) or Asian Working Group for Sarcopenia (AWGS) criteria sourced from the community or hospital (Table 1); (iii) including experimental and control groups ('I' and 'C' above); (iv) the study result included the use of validated tools to assess muscle mass, muscle strength, physical performance, laboratory indicators, nutritional intake indicators, and general parameters of the human body; and (v) the duration of the intervention was not <4 weeks. Articles that met at least one of the following exclusion criteria were not considered: (i) study types other than RCT; (ii) non-human research; (iii) insufficient data; (iv) data from previous publications of the same trial; and (v) reviews, case reports, letters, editorials, meta-analyses, and conference reports.

2.4. Data extraction and risk of bias assessment

Information extracted from the studies included comprised name of the first author, year of study, country or region, type of blinding of study design, diagnostic criteria for sarcopenia, number of participants, age and average age of the population included, sex ratio, mean and standard deviation (SD) of body mass index (BMI), intervention groups setting, leucine, vitamin D and calcium content in the experimental group, duration of the intervention, outcome measures, mean and SD of change between baseline and endpoint of outcome measures, and other basic information. If data on outcome measures were analyzed in studies with different intervention timings, they were recorded separately.

The risk of bias for each study was assessed using the Cochrane Risk of Bias Tool 2 (RoB2, Version 9) (www.riskobias.info) [39] for RCT,

Table 1 Characteristics of included studies.

and total dose of supplements in the experimental group (%, %) Experimental group: 100, 27.8 RT + WP group (n = 23). RT group (n = 24). Control group: NA. Experimental group: 100, 95.2 WP group (n = 37). WP kT group (n = 37). WP + RT group (n = 37). WP + RT group (n = 37). WP + RT group (n = 64). Control group: RC group (n = 64). Control group: RC group (n = 63). Experimental group: WP group (n = 63). Control group: RC group (n = 63). Experimental group: 80, 80 WP + RT group (n = 19). Control group: RC group (n = 19). Control group: PLA group (n = 19). Experimental group: 87, 87 WP group (n = 19). Control group: PLA group (n = 19). Experimental group: PLA group (n = 19). Control group: PLA group (n = 19). Control group: PLA group (n = 190). Experimental group: PLA group (n = 190). Control group: PLA group (n = 194). Control group: PLA group (n = 196).	Year	Country/ Region	Blind design	Diagnostic criteria	Patient recruitment setting	Sample size (n)	Age (Years, Mean)	Sex (% Female)	BMI (Kg/ m², mean ±	Intervention group	Proportion of whey protein in the protein dose	Leucine and Vitamin D dose in the	Duration	Outcome measures
AWGS Community 70 ≥65, 84.29% 20.3 th RT + Wp group (n = 2.3) we group (n = 3.3) we group (n = 6.3) we group (n =									standard deviation)		and total dose of supplements in the experimental group (%, %)	experimental group (g, IU)		
AWGS Community 169 >-60, 85.58% 23.2 by We group (n = 37). TO 95.2 by Weeks TO 95.2 b	2022 Japan		Double- blind RCT	AWGS 2014	Community	70	≥65, 77.70	84.29%	20.23 ± 2.78	Experimental group: RT + WP group (n = 23). RT group (n = 23). WP group (n = 23). WP group (n = 24).		2.3, not contain	24 weeks	ASMI, BMI, HGS, GS
EWGSOP Hospital 127 ≥ 66, 26, 278 4 Experimental group; 10, 50 28, 800 8 weeks 2010 EWGSOP Community 180 > 74, 67.9% 26.13 ± Experimental group; 64.8 m not 82.80	2021 China		RCT	AWGS 2014	Community	169	>60, 71.80	58.58%	23.11 ± 2.82	Control group: NA. Experimental group: WP group (n = 51). RT group (n = 37). WP + RT group (n = 48). Control group: RC group (n = 33).		not contain, 250	112 weeks	ASMI, ASM, FM
EWGSOP Community 180 >74, 67.9% 26.13 ± Experimental group 48,48 not 6 2010 83.80 3.97 WP group (n = 55). contain,800 months EWGSOP Community 38 272, 0% 24,74 ± Experimental group: RC group (n = 52). 9,400 18 EWGSOP Community 227 2.65 64.93% 26.12 ± Experimental group: RC group (n = 19). 3,800 13 EWGSOP Community 227 2.65 64.93% 26.12 ± Experimental group: RC group (n = 103). 3,800 13 EWGSOP Community 380 >-65 65.53% 26.10 ± Experimental group: PLA 4 group (n = 124). 13 EWGSOP Community 380 >-65 65.53% 26.10 ± Experimental group: PLA 3,800 13 EWGSOP Community 380 >-65 65.53% 26.10 ± Proprintental group: PLA Rouge (n = 196). 13	2020 Italy		Double- blind RCT	EWGSOP 2010	Hospital	127	>65, 81.50	66.2%	21.55 ± 2.78	Experimental group: WP group (n = 64). Control group: PLA group (n = 63).	100, 50	2.8, 800	8 weeks	ASM, HGS, FTCST, GS, SPPB, Albumin, TC, IGF-1, CRP, 23-Itydroxyvita- min D, Fat, TEI, Protein, Body weight, ADL, SF- 36 MGS, SF-36
EWGSOP Community 38 ≥72, 0% 24.74 ± Experimental group; 80, 80 9, 400 18 months 2010 78.52 2.48 WP + RT group (n = 19.1 Control group; RC group (n = 19).	2020 Finland		Double- blind RCT	EWGSOP 2010	Community	180	>74,	67.9%	26.13 ± 3.97	Experimental group: WP group (n = 65). Control group: RC group (n = 52).		not contain,800	6 months and 12 months	HGS, ASM
EWGSOP Community 227 ≥65, 64.93% 26.12 ± Experimental group: 87, 87 3, 800 13 2010 77.72 2.68 WP group (n = 103). Control group: PLA group (n = 124). FWGSOP Community 380 >65, 53% 26.10 ± Experimental group: PLA Group (n = 144). EWGSOP T7.71 2.66 WP group (n = 184). Control group: PLA group (n = 194).	2020 Germany		Double- blind RCT	EWGSOP 2010	Community	38	≥72, 78.52	%0	24.74 ± 2.48	Experimental group: WP + RT group (n = 19). Control group: RC group (n = 19).		9, 400	18 months	ASMI, HGS, GS
EWGSOP Community 380 > 65 , 65.53% $26.10 \pm$ Experimental group: 100, 56.3 3, 800 13 2010 77.71 2.66 WP group (n = 184). Control group: PLA group (n = 196).	2019 Belgium, Germany, Ireland, Italy, Sweden and the United Kingdom		Double- blind RCT	EWGSOP 2010	Community	227	≥65, 77.72	64.93%	$\begin{array}{c} 26.12 \pm \\ 2.68 \end{array}$	Experimental group: WP group (n = 103). Control group: PLA group (n = 124).		3, 800	no weeks	II-6, CRP
	2019 Belgium, Germany, Ireland, Italy, Sweden, and the United Kingdom		Double- blind RCT	EWGSOP 2010	Community	380	>65, 77.71	65.53%	$\begin{array}{c} 26.10 \ \pm \\ 2.66 \end{array}$	Experimental group: WP group (n = 184). Control group: PLA group (n = 196).		3, 800	weeks	min D

Table 1 (continued)

L. Lı et al.			
Outcome measures	ASMI, ASM, FW, HGS, FTCST, GS, AI- bumin, IL-6, TC, IGP-1, CRP, 25- hydroxyvitamin D, Fat, TEI, Car- behydrate, Pro- tein, BMI, Body weight, SF-36 MCS, SF-36 PCS	ASMI, FW, HGS, IGF-I, CRP, Fat, TEI, Carbohy- drate, Protein, BMI, Body weight, ADL, SF- 36 MCS, SF-36 PCS	ASM, HGS, FTCST, SPPB, IGF-1, 25-hy- droxyvitamin D, TEI, Protein
Duration	6 months	12 weeks	13 weeks
Leucine and Vitamin D dose in the experimental group (g, IU)	not contain, 702	4, 100	3, 800
Proportion of whey protein in the protein dose and total dose of supplements in the experimental group (%, %)	100, 61	100, 66.7	100, 57.1
Intervention group	Experimental group: WP group (n = 30). Control group: PLA group (n = 30).	Experimental group: WP group (n = 69). Control group: PLA group (n = 61).	Experimental group: WP group (n = 184). Control group: PLA group (n = 196).
BMI (Kg/ m², mean ± standard deviation)	20.54 ± 3.42	23.89 ± 4.1	26.10 ± 2.66
Sex (% Female)	92%	59.29%	65.53%
Age (Years, Mean)	60–85, 74.03	>65, 80.30	≥65, 77.71
Sample size (n)	99	130	380
Patient recruitment setting	Community	Hospital	Community
Diagnostic criteria	AWGS 2014	EWGSOP 2010	EWGSOP 2010
Blind design	Double- blind RCT	Double- blind RCT	Double- blind RCT
Country/ Region	Ohina	Italy	Belgium, Germany, Ireland, Italy, Sweden, and the United
Year	2019	2016	2015
Author	Yacong Bo et al. [53]	Mariangela Rondanelli et al. [54]	Jürgen M. Bauer et al. [55]

Note: ADI. Activities of daily living score; ASM: Appendicular skeletal muscle mass; ASMI: Appendicular skeletal muscle mass index; AWGS: Asian Working Group for Sarcopenia; BMI: Body mass index; CRP: C-reactive protein; EWGSOP: European Working Group on Sarcopenia in Older People; FM: Fat mass; FTCST: 5-time chair stand test; GS: Gait speed; HGS: Handgrip strength; IGF-1: Insulin like growth factor-1; IL-6:Interleukin-6; PLA: Isocaloric placebo group; RC: Routine consultation group; RT + WP: resistance training intervention with leucine enriched whey protein supplementation group; SPPS: Short Physical Performance Battery (SPPB) score; SF-36 MCS: Shortform 36-item health survey Mental component summary score; SF-36 PCS: Short-form 36-item health survey Physical component summary score; TEI: Total energy intake.

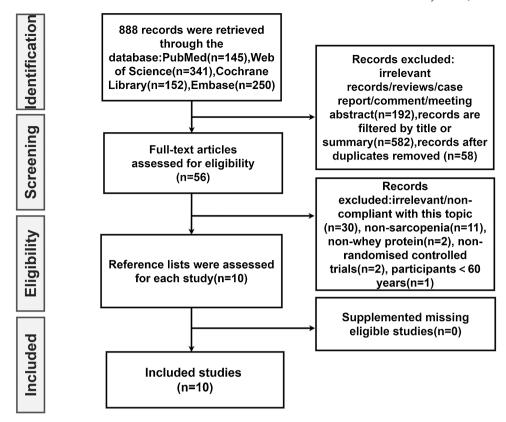


Fig. 1. The detailed screening process of the literature.

considering five areas of bias [1]: risk of bias arising from the randomization process [2], risk of bias due to deviation from the intended intervention [3], risk of bias due to missing outcome data [4], risk of bias in the measurement of the results, and [5] risk of bias in the selection of reported results.

2.5. Data synthesis and statistical analysis

The primary outcomes of this review were the changes in muscle mass, strength, and physical performance. Secondary outcomes were changes in laboratory indicators, general parameters (body weight and BMI), nutritional intake indicators, and activities of daily living (ADL) [40] scores and simple mental and physical health scores. Due to differences in measurements across studies, continuous results were expressed as standardized mean differences (SMDs) with 95% confidence intervals (CI). When the mean and SD data were missing from the original study, they were obtained using formula calculations or data conversion tools [36,41,42]. Inconsistent units of measurement were converted to the common units required for the analysis.

Meta-analyses were performed when at least two studies compared the results of participants who received and did not receive WP. Simultaneously, the experimental group with combined RT was analyzed to explore whether the combined effect was statistically significant. Subgroup analyses were performed to explore the sources of heterogeneity. According to the Corens'd effect size, for statistically significant SMD results, the effect intensity of the results was categorized as low, moderate, high, or very high, based on cutoffs of 0.2, 0.5, and 0.8, respectively [43]. Data heterogeneity was assessed using Cochran's Q test and $\rm I^2$ test. The random-effects model was used when statistical heterogeneity was significant ($\rm I^2 > 50\%$ [44]), otherwise, the fixed-effects model was used. Funnel charts, the Begg rank correlation test, and Egger's linear regression test were used to detect publication bias [45]. To examine the effects of the individual studies on the overall pooled results, sensitivity analyses were performed to verify the robustness of the results

by sequentially omitting each study. Statistical significance was set at P < 0.05. All analyses were performed using Stata 15.0 software.

2.6. Confidence in evidence

The certainty of the evidence was assessed using the NutriGrade scoring system [46]. This tool considers seven meta-analysis items: risk of bias, study quality and limitations, precision, heterogeneity, directness, publication bias, funding bias, and study design. The corresponding levels of the total score calculated are as follows: 0–3.99: very low-level meta-evidence; 4–5.99: low-level meta-evidence; 6–7.99: intermediate meta-evidence; and \geq 8: high-level meta-evidence.

3. Results

3.1. Search results and basic trial characteristics

The detailed literature screening process is represented in Fig. 1. A total of ten RCTs [21,47–55] were included in our review for quantitative analysis. Apart from one study [48] that did not mention its blinding design, the remaining studies were all double-blind. These studies were conducted across nine different countries in Asia and Europe, spanning 8 weeks–18 months. One study specifically included patients with osteosarcopenia (OS) — a condition of concurrent osteoporosis and sarcopenia [51]. Three studies utilized the AWGS diagnostic criteria, and seven employed the EWGSOP. Detailed study characteristics and data are presented in Table 1.

3.2. Participants' characteristics

A total of 1761 participants were included in the study. However, three studies [21,52,55] were derived from the same trial, although with different primary outcomes. Therefore, the actual number of participants across the ten included RCTs was 1154. All patients were \geq 60, with a

mean age of 72–84 years. The mean BMI of the patients was $20.5–26.1 \, kg/m^2$, and five studies included patients who were overweight or obese. One trial [51] exclusively recruited male participants, whereas in the remaining studies, the prevalence of females was 55–84%.

3.3. Characteristics of supplements

Across all experimental groups from the studied research, the average proportion of WP in the total nutritional supplement and protein content was 62.91% and 91.50%, respectively. Patients received oral doses of 9.6-40 g of WP per intake. Furthermore, the frequency of administration varied across studies, with one study [54] administering the protein supplement once a day, seven studies administering it twice a day, one study [48] administering it three times a day, and another study [51] describing only the total daily intake. Significantly, all the studies implemented supplements rich in WP. In three studies [49,51,52], the experimental groups' supplements were augmented with leucine, vitamin D, and calcium. Furthermore, three other studies [21,54,55] added leucine and vitamin D, while one study [47] only added leucine, and three other studies only incorporated vitamin D. However, in a comprehensive view, vitamin D, leucine, and calcium were added in nine, seven, and three studies, respectively. The dose of leucine is 2.3-9 g, vitamin D is 100-800 IU, and calcium is 500-1200 mg.

Across the control group, seven studies consumed PLA, consisting mainly of carbohydrates similar to those in the experimental group, one study [48] was an RC group in which dietitians designed personalized diets to achieve the basic nutrients required, and one study [47] was a cross-control between experimental groups because no blank or PLA control group was available. Another study [51] included WP with RT, where WP was 1.5–1.6 g/kg/day, while the control group was supplemented with WP at 1.2 g/kg/day. The above grouping was performed under the premise of the patients' regular diet, and intake was guaranteed to meet the daily needs of the human body.

3.4. RT characteristics

Across the ten studies, six implemented systematic whole-body RT. Among these, three studies [47,48,51] primarily incorporated moderate-to-high-intensity RT in their protocols, typically conducted 2–3 times per week, with each session lasting approximately 30 min. The other three studies [49,50,54] guided patients through low-to-moderate-intensity basic exercise training, scheduled 3–5 times per week, with each session lasting approximately 30 min. The training duration was designed to match the timeline of nutritional intervention for each study. Conversely, the remaining four studies did not incorporate RT into their experimental design.

3.5. Group design characteristics

Six of the ten studies exclusively focused on contrasting groups supplemented with WP against PLA groups. Additionally, one study [50] compared an intervention group with an RC group. Three other studies included data from groups that underwent a combination of WP and RT. Two of these studies [47,48] incorporated multiple control groups, whereas one study [51] merely compared WP with RT against the PLA group. Moreover, the research conducted by Mikko P. Björkman et al. [50] included data from interventions spanning 6 and 12 months.

3.6. Meta-analysis results

The pooled results for each study outcome used in the meta-analysis are presented in Table 2.

3.7. Effects of WP supplements with or without RT on muscle mass

In the WP group, we included appendicular skeletal muscle mass index (ASMI), ASM, and fat mass (FM) in our muscle mass assessment.

Participants in the WP group exhibited a significant increase in ASMI (SMD: 0.47, 95% CI: 0.23, 0.71) and ASM (SMD: 0.28, 95% CI: 0.11, 0.45) compared to those in the PLA or RC (PLA/RC) groups who consumed an equivalent number of calories, while there were no differences observed in changes to FM (SMD: -0.02, 95% CI: -0.26, 0.22). In the WP with RT group, there was no significant difference in ASMI compared to the RT group (SMD: 0.24, 95% CI: -0.11, 0.59) (Figures S1–S3).

3.8. Effects of WP supplements with or without RT on muscle strength

In the WP group, we analyzed HGS and FTCST scores to evaluate muscle strength. In comparison with the PLA/RC group, no significant changes were observed in HGS (SMD: 0.40, 95% CI: -0.28,1.07) and FTCST (SMD: -0.04, 95% CI: -1.33,1.24). In the WP with RT group, muscle strength was assessed using HGS, which showed a significant increase compared to PLA/RC (SMD: 0.67, 95% CI: 0.29, 1.04) groups. However, no significant difference was observed when compared to the RT group (SMD: 0.22, 95% CI: -0.13, 0.56) (Figures S4 and S5).

3.9. Effects of WP supplements on physical performance

Participants' physical performance was evaluated by measuring their GS and SPPB scores. Participants in the WP group exhibited a significant increase in GS (SMD: 1.13, 95% CI: 0.82, 1.44) compared to the PLA/RC group (Figures S6 and S7).

3.10. Effects of WP supplements on laboratory indicators

Laboratory indicators in both the experimental and control groups, revealed that compared to the PLA/RC group, albumin (SMD: 0.60, 95% CI: 0.30, 0.89), insulin-like growth factor-1 (IGF-1) (SMD: 0.77, 95% CI: 0.33, 1.22), and 25-hydroxyvitamin D (SMD: 2.14, 95% CI: 1.07, 3.21) were significantly elevated in the WP group, while interleukin-6 (IL-6) (SMD: -0.32, 95% CI: -0.55, -0.09) was notably reduced. Nevertheless, the alterations in total cholesterol (TC) (SMD: 0.00, 95% CI: -0.28, 0.29) and C-reactive protein (CRP) (SMD: -0.11, 95% CI: -0.53, 0.30) had no statistical significance (Figures S8 and S9).

3.11. Effects of WP supplements on daily dietary nutrient intake

Fat intake per day (fat [g/d]), total energy intake (TEI), carbohydrate intake per day (carbohydrate [g/day]), protein intake per day (protein [g/day]), and protein intake per kilogram (kg) of body weight per day (protein [g/kg/day]) were used to evaluate changes in nutrient intake between the WP and PLA/RC groups. The results indicated that the experimental group exhibited a significant increase in TEI (SMD: 0.16, 95%CI: 0.02, 0.29) and protein intake (g/day) (SMD: 0.97, 95%CI: 0.37, 1.58) compared to the control group, while no significant differences were observed in the intact of fat (g/day) (SMD: 0.05, 95%CI: -0.24, 0.33), carbohydrate (g/day) (SMD: 0.85, 95%CI: -0.94, 2.64), and protein (g/kg/day) (SMD: 1.26, 95%CI: -0.59, 3.11). (Figures S10 and S11).

3.12. Effects of WP supplements on fundamental physical parameters

The fundamental parameters of body weight and BMI were analyzed. No significant changes were observed in the BMI (SMD: 0.25, 95%CI: $-0.04,\,0.54)$ and body weight (SMD: 0.14, 95%CI: $-0.08,\,0.36)$ of the WP group compared to the PLA/RC group (Figure S12).

3.13. Effects of WP supplements on other relevant assessment scales

Three additional relevant assessment scales were used to compare the WP and PLA/RC groups. The ADL score (SMD: 0.80, 95%CI: 0.55, 1.06) significantly increased in the WP group compared to the control group, while there was no significant difference between groups for Short-form

Table 2Basic characteristics of each outcome, meta-analysis results, publication bias assessments and sensitivity analyses.

Outcome	Number of Studies (n)	Total Samples (n)	Model of effect	Standardized Mean Differences, with 95% Confidence Interval	P-value	I ² (%)	P-value of Egger linear regression test	P-value of Begg rank correlation test	Sensitivity analyses
Muscle mass related items									
WP vs. PLA/RC Appendicular skeletal muscle mass index (ASMI) (kg/m²)	3	274	Fixed	0.47 (0.23, 0.71)	< 0.0005	0.0	0.292	1.000	Robust
Appendicular skeletal muscle mass (ASM)(kg)	4	530	Random	0.28 (0.11, 0.45)	0.002	57.0	0.850	1.000	Robust
Fat mass (FM) (kg) WP with RT vs. RT	3	274	Random	-0.02 (-0.26, 0.22)	0.851	66.7	0.452	0.296	Robust
Appendicular skeletal muscle mass index (ASMI) (kg/m²) Muscle strength related items WP vs. PLA/RC	2	131	Fixed	0.24 (-0.11, 0.59)	0.174	0.0	-	1.000	Robust
Handgrip Strenght (Kg)	9	1184	Random	0.40 (-0.28, 1.07)	0.246	96.7	0.754	0.417	Robust
5-time chair stand test (s) WP with RT vs. \(\text{PLA/RC} \(\text{RT} \)	3	451	Random	-0.04 (-1.33, 1.24)	0.948	97.3	0.644	1.000	Robust
Handgrip Strenght (Kg) [□]	2	119	Fixed	0.67 (0.29, 1.04)	< 0.0005	0.0	_	1.000	Robust
Handgrip Strenght (Kg) [□]	2	131	Fixed	0.22 (-0.13, 0.56)	0.218	0.0	_	1.000	Robust
Physical performance related item WP vs. PLA/RC	ıs								
Gait speed (m/s)	2	187	Fixed	1.13 (0.82, 1.44)	< 0.0005	6.5	-	1.000	Robust
Short Physical Performance Battery (SPPB) score	6	918	Random	0.38 (-0.16, 0.92)	0.171	93.6	0.296	0.024	Less Robust
Laboratory indicators related item	ıs								
WP vs. PLA/RC									
Albumin (g/L)	2	187	Fixed	0.60 (0.30, 0.89)	< 0.0005	40.1	-	1.000	Robust
Interleukin-6(IL-6) (pg/mL)	2	287	Fixed	$-0.32 \; (-0.55, -0.09)$	0.007	0.0	-	1.000	Robust
Total Cholesterol (TC) (mmol/L)	2	187	Fixed	0.00 (-0.28, 0.29)	0.979	0.0	-	1.000	Robust
Insulin like growth factor-1 (IGF-1) (ng/mL)	3	490	Random	0.77 (0.33, 1.22)	< 0.0005	77.9	0.455	1.000	Robust
C-reactive protein (CRP) (mg/L)	4	544	Random	-0.11 (-0.53, 0.30)	0.786	81.8	0.298	0.734	Robust
25-hydroxyvitamin D (ng/mL)	4	867	Random	2.14 (1.07, 3.21)	< 0.0005	97.2	0.621	1.000	Robust
Nutrient intake indicators related WP vs. PLA/RC	items								
Fat (g/day)	2	198	Fixed	0.05 (-0.24, 0.33)	0.734	20.0	-	1.000	Robust
Total energy intake (kcal/day)	5	830	Fixed	0.16 (0.02, 0.29)	0.023	0.0	0.037	0.221	Robust
Carbohydrate (g/day)	2	198	Random	0.85 (-0.94, 2.64)	0.352	96.7	-	1.000	Robust
Protein (g/day)	3	326	Random	0.97 (0.37, 1.58)	0.002	83.9	0.783	1.000	Robust
Protein (g/Kg/day)	3	564	Random	1.26 (-0.59, 3.11)	0.181	98.8	0.688	1.000	Robust
Basic Physical indicators related in WP vs. PLA/RC									
Body Mass Index (BMI) (Kg/m ²)	2	198	Fixed	0.25 (-0.04, 0.54)	0.087	0.0	-	1.000	Robust
Body weight (kg)	3	326	Fixed	0.14 (-0.08, 0.36)	0.223	0.0	0.897	1.000	Robust
Other relevant assessment scales r	elated items								
WP vs. PLA/RC Activities of daily living (ADL)	2	257	Fixed	0.80 (0.55, 1.06)	< 0.0005	31.6	-	1.000	Robust
score Short-form 36-item health survey Mental component summary (SF-36 MCS) score	3	317	Random	0.44 (-0.15, 1.03)	0.146	84.4	0.418	0.296	Robust
Short-form 36-item health survey Physical component summary (SF-36 PCS) score	3	317	Random	0.32 (-0.36, 1.00)	0.360	88.3	0.007	0.296	Robust

Notes: WP vs. PLA/RC: Whey protein group vs. Isocaloric placebo/ Routine consultation group.

WP with RT vs. \Box PLA/RC \Box RT: Whey protein with resistance training group vs. \Box Isocaloric placebo/ Routine consultation group \Box Resistance training group.

36-item Health Survey Mental Component Summary (SF-36 MCS) (SMD: 0.44, 95%CI: -0.15, 1.03) and Physical Component Summary (SF-36 PCS) scores (SMD: 0.32, 95%CI: -0.36, 1.00) (Figures S13 and S14).

3.14. Publication bias and sensitivity analyses

The results of the publication bias and sensitivity analyses are shown in Figures S15–S21. Using the images in each row as a unit, a publication bias funnel plot, an Egger test plot, a Begg test plot, and a sensitivity analysis plot were constructed from left to right. To avoid bias in the assessment of the publication bias funnels, we performed individual analyses for each study.

In the physical performance group, we identified a significant bias (Begg analysis P-value = 0.024) and the sensitivity analysis results were not robust. In addition, the TEI's publication bias analysis showed an Egger analysis P-value of 0.037 and an SF-36 PCS Begg analysis P-value of 0.007. However, for the remaining studies, no significant bias was detected, and sensitivity analyses suggested robust results.

3.15. Risk of bias assessment

The results of the RoB2 bias risk assessment of the studies included in this review are shown in Fig. 2. One study [51] was assessed as high

Fig. 2. The results of the RoB2 bias risk assessment of the studies included in this review.

risk because the experimental and control groups used different criteria for common measures (domain 5), and some of the remaining potential sources of bias were mainly due to a lack of information on randomization or concealment methods (domain 1), a lack of double-blind design, or an inability to blind resistance movements (domain 2). Ninety percent of the overall assessments for all studies were judged to have a low risk of bias. The full rationale for RoB2's decision can be found in Excel file S1.

3.16. Quality of evidence assessment using NutriGrade

The certainty of the evidence was assessed in seven categories based on the groupings used in this study. According to NutriGrade, the overall quality of the meta-evidence for this study was considered to be high, with a score of 8.3 out of 10. The seven main analysis categories had a score between 7.5 and 9.1 points. The quality of results in the categories of physical performance and basic physical indicator outcomes was downgraded to intermediate meta-evidence, attributed to the risk of bias, heterogeneity, publication bias, and the insufficient number of included studies. The remaining five outcome categories were assessed with scores >8 points, considered high-level meta-evidence. The full rationale for determining the results of the nutrient-level quality assessment is shown in Table S3.

4. Discussion

4.1. Main findings

We divided the relevant indicators affecting patients with sarcopenia into seven categories consisting of 25 indicators. We conducted a comprehensive and thorough meta-analysis of the overall effects of WP with or without RT in older people with sarcopenia. Notably, all included studies were RCT, and we used the latest RoB2 tool for literature quality assessment, thus ensuring the credibility of our compiled results. Finally, we assessed outcome indicators using NutriGrade, a tool specifically developed to evaluate evidence in nutritional research.

Our study found that WP supplementation significantly increased ASM, ASMI, and GS, but not in the HS, in older patients with sarcopenia compared to those in the PLA/RC group. However, there was a significant increase in HS in the WP with RT group compared to that in the PLA/RC group, suggesting that the improvement in muscle strength may be primarily due to RT. In addition, WP with RT had no significant effect on ASMI compared to RT alone, suggesting that the combined effect did not enhance the effectiveness of RT. Our secondary outcomes found that, compared to the PLA/RC group, the WP group had significantly reduced inflammatory markers (IL-6), significantly increased IGF-1 and albumin levels, significantly improved TEI and protein intake, and enhanced ADL in patients.

Effects of WP supplementation, with or without RT, on muscle mass, strength, and physical performance

The WP intervention demonstrated significant efficacy in improving physical performance but showed only moderate or non-significant effects in improving muscle mass and strength, and this positive effect may be attributed primarily to RT. Firstly, WP, owing to its high biological availability, is considered a premium source of protein. Particularly for older populations that exhibit decreased physiological nutrient absorption efficiency and diminished protein synthesis capacity, WP supplementation may have a greater positive impact on their muscle health [56]. This could provide a theoretical basis for its role in muscle synthesis and resistance to muscle atrophy [57], and it might be a key factor in the positive effect of WP on improving muscle mass and function [58]. Additionally, studies have found that the intake of 20–40 g of WP per meal (approximately 1.5–1.6 g/kg/day) could maximize the stimulation of muscle protein synthesis [59], and older adults with sarcopenia may need a higher dose as a result of anabolic resistance [60].

Secondly, RT is undoubtedly beneficial for patients with sarcopenia. The World Health Organization recommends that adults aged 65 years and above engage in 150 min of moderate-intensity or 75 min of vigorousintensity aerobic physical activity per week, along with musclestrengthening activities on 2 or more days a week (i.e., strength training/RT) [61]. The U.S. Department of Health and Human Services suggests engaging in a multi-component exercise program, including balance training and muscle-strengthening exercises (at least 2 days per week), as well as performing moderate-intensity aerobic activity for at least 30-45 min, three or more times per week, for a minimum of 3-5 months. This has proved to be most effective in improving functional capacity in frail older adults [61]. While high-load resistance training has proved effective in older adults, its implementation may be challenging for individuals with muscle and skeletal disorders, coronary artery disease, diabetes, and other comorbidities, because of joint pain, decreased cardiopulmonary reserve and so on. For patients with sarcopenia, moderate- or low-load resistance training or adherence to the basic founding principles of DeLorme, using "unconventional" progressive overload in strength exercises, is considered an effective approach [61–63]. Future research should focus on understanding ways to increase exercise participation and long-term adherence to exercise [25]. RT has been proven to stimulate muscle growth [64] and enhance nutrient uptake [65]. Protein supplementation can also enhance the adaptive response of skeletal muscles to RT [66], and their combined effect may enhance muscle mass and function by activating muscle growth signaling pathways [67].

However, protein supplementation alone has shown a lot of contradictory results in clinical trials, or rather, its effects are less pronounced [26,32,33]. Similarly, it is still inconclusive whether WP combined with RT causes a "1+1>2" or "1+1<2" effect in clinical trials. Although the therapeutic effects of WP and RT on sarcopenia have been corroborated in numerous studies, their effects in clinical studies may be uncertain because of a variety of factors, including the patient's baseline nutritional status, disease severity, supplement dosage, and exercise regimen [68,69].

4.2. Effects of WP supplements on laboratory indicators

In the current meta-analysis, we concurrently analyzed laboratory indicators, particularly inflammatory indicators. This is crucial, as two key processes are involved in the onset of age-related sarcopenia: the accumulation of senescent cells in skeletal muscle and adipose tissue, and systemic low-grade chronic inflammation [70]. Furthermore, inflammation substantially increases the risk of mortality due to sarcopenia [71]. Major inflammatory molecules worsening muscular conditions through promoting infiltration of inflammatory cells via NF- κ B are TNF- α , IL-6, IL-1, and chemokines [72]. Concurrently, inflammation associated with cellular senescence may lead to the senescence-associated secretory phenotype, and the accumulation of this phenotype may induce chronic

inflammation and changes in the cellular microenvironment, thus significantly promoting sarcopenia [73–75]. Particularly, persistent levels of IL-6 can impair muscle integrity and function, leading to muscle degeneration and atrophy [76]. Our study indicated that WP supplementation can significantly reduce IL-6 levels and increase IGF-1 levels. IGF-1 plays a pivotal role in muscle growth, differentiation, and regeneration by promoting muscle synthesis and resisting progressive muscle loss [77]. It also negatively regulates interleukin levels and counteracts inflammation [78]. Additionally, vitamin D deficiency and limited physical activity are closely associated with reduced muscle mass, strength, physique, and weight loss [79,80]. We observed a significant increase in 25hydroxyvitamin D levels in the experimental group. While this may be linked to the presence of vitamin D in the WP supplement consumed by the experimental group, evidence suggests that merely supplementing with vitamin D does not improve the muscle loss index in communitydwelling older adults and might even impair certain physiological functions [81]. This implies that a combination of WP and vitamin D supplements could be more beneficial for older people with sarcopenia, a perspective supported by previous studies [26,32]. Furthermore, it is worth noting that the marked increase in albumin and the unchanged TC in our experimental group also underscore the advantages of WP supplementation.

4.3. Effects of WP supplements on daily dietary nutrient intake

Daily dietary nutrient intake was considered one of the outcomes to investigate the impact of daily supplementation on macronutrient and energy intake in this study. Overall, WP consumption did not significantly increase fat and carbohydrate intake in the experimental group, but increased TEI and protein intake. This could be associated with the concurrent RT undertaken by participants in the experimental group. Although co-ingestion of WP and carbohydrates may not increase the rate of muscle protein synthesis [82], protein intake has a beneficial impact on muscle synthesis.

4.4. Effects of WP supplements on fundamental physical parameters

The two most fundamental metrics of human health, BMI and body weight, are crucial criteria for assessing obesity in older populations. Diminishing muscle mass inherent to aging can potentially lead to a decrease in the basal metabolic rate, resulting in obesity. Obesity can exacerbate muscle loss through inflammatory responses and endocrine alterations. The coexistence of muscle loss and obesity could lead to a more severe condition, known as sarcopenic obesity [83,84]. Therefore, the potential adverse effects of this level should be considered when contemplating nutritional supplementation therapy for sarcopenia. Our findings indicate that WP does not have a significant effect on BMI and body weight in patients with sarcopenia. Finally, it is worth mentioning that we found that WP can significantly improve ADL scores, indicating an overall improvement in the patient's ability to perform activities in daily life.

4.5. Heterogeneity, publication bias, and sensitivity analyses

Firstly, in our analysis of publication bias, we observed its presence in the outcome measures of the SPPB, TEI, and SF-36 PCS, with the sensitivity analysis for the SPPB yielding inconsistent results. However, after excluding the study conducted by Rondanelli et al. [49], subsequent publication bias analysis for the SPPB revealed no significant bias (Figures S17 [b] and [b']). This could be attributed to the study incorporating medium-intensity RT five times a week for all participants, an intervention that likely overshadows the effects of WP, thereby introducing bias into the results. In terms of the remaining two indicators, owing to the limited number of studies included in our analysis and the robustness of the results suggested by the sensitivity analysis, we were unable to further investigate the causes of publication bias. Secondly, the

heterogeneity in this study may be attributable to multiple factors, such as the selection of the population in the ten included studies, the research design, and the outcome measures analyzed. Within the subgroup analysis (muscle strength-related items, as shown in Table 2), we observed that when comparing WP with RT with the PLA or RT groups, only the former showed significant changes, further confirming that RT may be a source of heterogeneity in the observed outcomes. Additional large-scale RCTs are required to verify the accuracy of these findings.

4.6. Comparison of similar studies

Some recent studies relevant to our topic were identified. A metaanalysis conducted by Chang et al. [26] investigated the effects of supplementation with WP, leucine, and vitamin D on sarcopenia. The analysis included three RCTs, and the findings suggested that the blend supplement effectively increased ASM. However, it did not significantly improve the HGS or SPPB scores unless combined with RT. Kamińska et al. [33] conducted a meta-analysis on the effects of WP on individuals with sarcopenia. They included ten RCTs but had a similar yet less comprehensive focus compared to our study and did not include an analysis of RT. They demonstrated that WP had no significant effect on ASM, HGS, FTCST, SPPB, or body weight. Nasimi et al. [32] investigated the effects of WP supplementation (with or without vitamin D supplementation) on measures related to sarcopenia. They showed that WP significantly improved ASM and physical performance in patients with sarcopenia; however, these improvements were not observed in healthy individuals. Supplementation with WP and vitamin D significantly improved muscle strength, mass, and physical performance in the entire study population. Furthermore, a meta-analysis conducted by Cuyul-Vásquez et al. [34] examined the effects of WP supplementation during RT on muscle mass and strength in patients with sarcopenia in seven studies. Studies have demonstrated that WP supplementation during RT significantly increases ASM and HGS compared to RT alone, but the strength of the effect is small and the GRADE evidence is very low. Overall, there are some discrepancies between the items analyzed in recently published studies and our results, and additional research is required to verify the validity of our results.

4.7. Limitations

This study had certain limitations. First, the literature search was confined to English publications. Second, although two independent authors evaluated the quality of literature and evidence using the RoB2 and NutriGrade systems, some studies were difficult to fully randomize or double-blind, making evaluation challenging and introducing an inevitable element of subjectivity. Third, the studies included in our analysis demonstrated inconsistent diagnostic criteria for sarcopenia. At the research level, several trials have small sample sizes and short durations. Moreover, the limited number of studies included in this review prevented subgroup analysis for some outcome measures, such as analyses of different WP dosages, the presence or absence of leucine, vitamin D, or calcium in WP, and analysis of various RT intensities. Future research should aim to design studies that explore the impact of these factors.

5. Conclusions

The results demonstrate that WP can improve muscle mass and physical performance but does not have a significant effect on muscle strength. A significant increase in muscle strength was observed when WP was combined with RT. However, further research is required to validate these findings. Additionally, WP supplementation showed significant benefits in enhancing ADL, increasing IGF-1 and albumin levels, promoting participants' adherence to TEI and protein intake, and reducing inflammation marker levels. Furthermore, WP had no

significant effect on BMI, body weight, or FM. These findings provide new insights into the clinical applications of WP.

Institutional review board statement

Ethical review and approval were waived due to this study being a systematic review and meta-analysis.

Informed consent statement

Patient consent was waived due to this study being a systematic review and meta-analysis.

Data availability statement

Data were available within the article and its supplementary materials.

Conflicts of interest

The authors declare no conflict of interest.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jnha.2024.100184.

References

- [1] Coletta G, Phillips SM. An elusive consensus definition of sarcopenia impedes research and clinical treatment: a narrative review. Ageing Res Rev 2023;86:101883, doi: http://dx.doi.org/10.1016/j.arr.2023.101883.
- [2] Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 2020;21(3)300–7, doi:http://dx.doi.org/10.1016/j. iamda.2019.12.012 e2.
- [3] Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48(1):16–31, doi:http://dx.doi.org/10.1093/ageing/afy169.
- [4] Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 2011;12(4):249–56, doi:http://dx.doi.org/10.1016/j.jamda.2011.01.003.
- [5] Studenski SA, Peters KW, Alley DE, Cawthon PM, Mclean RR, Harris TB, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 2014;69(5):547–58, doi:http://dx.doi. org/10.1093/gerona/glu010.
- [6] Sayer AA, Cruz-Jentoff A. Sarcopenia definition, diagnosis and treatment: consensus is growing. Age Ageing 202251(10), doi:http://dx.doi.org/10.1093/ageing/afac220.
- [7] Yuan S, Larsson SC. Epidemiology of sarcopenia: prevalence, risk factors, and consequences. Metabolism 2023;155533, doi:http://dx.doi.org/10.1016/j. metabol.2023.155533.
- [8] Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2022;13(1):86–99, doi:http://dx.doi.org/10.1002/ icsm.12783.
- [9] Coelho-Junior HJ, Calvani R, Azzolino D, Picca A, Tosato M, Landi F, et al. Protein intake and sarcopenia in older adults: a systematic review and meta-analysis. Int J Environ Res Public Health 202219(14), doi:http://dx.doi.org/10.3390/ ijerph19148718.
- [10] D'onofrio G, Kirschner J, Prather H, Goldman D, Rozanski A. Musculoskeletal exercise: its role in promoting health and longevity. Prog Cardiovasc Dis 2023, doi:http://dx.doi.org/10.1016/j.pcad.2023.02.006.
- [11] Jang YJ. The effects of protein and supplements on sarcopenia in human clinical studies: how older adults should consume protein and supplements. J Microbiol Biotechnol 2023;33(2):143–50, doi:http://dx.doi.org/10.4014/jmb.2210.10014.
- [12] Beasley JM, Shikany JM, Thomson CA. The role of dietary protein intake in the prevention of sarcopenia of aging. Nutr Clin Pract 2013;28(6):684–90, doi:http://dx. doi.org/10.1177/0884533613507607.
- [13] Traylor DA, Gorissen SHM, Phillips SM. Perspective: protein requirements and optimal intakes in aging: are we ready to recommend more than the recommended daily allowance? Adv Nutr 2018;9(3):171–82, doi:http://dx.doi.org/10.1093/advances/ nmy003.
- [14] Burd NA, Yang Y, Moore DR, Tang JE, Tarnopolsky MA, Phillips SM. Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and after resistance exercise in elderly men. Br J Nutr 2012;108 (6):958–62, doi:http://dx.doi.org/10.1017/s0007114511006271.

- [15] Yang Y, Churchward-Venne TA, Burd NA, Breen L, Tarnopolsky MA, Phillips SM. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr Metab (Lond) 2012;9(1):57, doi:http:// dx.doi.org/10.1186/1743-7075-9-57.
- [16] West DWD, Abou Sawan S, Mazzulla M, Williamson E, Moore DR. Whey protein supplementation enhances whole body protein metabolism and performance recovery after resistance exercise: a double-blind crossover study. Nutrients 20179(7), doi: http://dx.doi.org/10.3390/nu9070735.
- [17] Liao Y, Peng Z, Chen L, Zhang Y, Cheng Q, Nüssler AK, et al. Prospective views for whey protein and/or resistance training against age-related sarcopenia. Aging Dis 2019;10 (1):157–73, doi:http://dx.doi.org/10.14336/ad.2018.0325.
- [18] Lesgards JF. Benefits of whey proteins on type 2 diabetes mellitus parameters and prevention of cardiovascular diseases. Nutrients 202315(5), doi:http://dx.doi.org/ 10.3390/nu15051294.
- [19] Jakubowicz D, Froy O. Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 diabetes. J Nutr Biochem 2013;24(1):1–5, doi: http://dx.doi.org/10.1016/j.jnutbio.2012.07.008.
- [20] Pal S, Ellis V. The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity (Silver Spring) 2010;18 (7):1354–9, doi:http://dx.doi.org/10.1038/oby.2009.397.
- [21] Liberman K, Njemini R, Luiking Y, Forti LN, Verlaan S, Bauer JM, et al. Thirteen weeks of supplementation of vitamin D and leucine-enriched whey protein nutritional supplement attenuates chronic low-grade inflammation in sarcopenic older adults: the PROVIDE study. Aging Clin Exp Res 2019;31(6):845–54, doi:http://dx.doi.org/ 10.1007/s40520-019-01208-4.
- [22] Badr G, Ramadan NK, Sayed LH, Badr BM, Omar HM, Selamoglu Z. Why whey? Camel whey protein as a new dietary approach to the management of free radicals and for the treatment of different health disorders. Iran J Basic Med Sci 2017;20(4):338–49, doi: http://dx.doi.org/10.22038/ijbms.2017.8573.
- [23] Sousa GT, Lira FS, Rosa JC, De Oliveira EP, Oyama LM, Santos RV, et al. Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids Health Dis 201211(67), doi:http://dx.doi.org/10.1186/1476-511x-11-67.
- [24] Bårdstu HB, Andersen V, Fimland MS, Aasdahl L, Raastad T, Cumming KT, et al. Effectiveness of a resistance training program on physical function, muscle strength, and body composition in community-dwelling older adults receiving home care: a cluster-randomized controlled trial. Eur Rev Aging Phys Act 202017(11), doi:http:// dx.doi.org/10.1186/s11556-020-00243-9.
- [25] Smith C, Woessner MN, Sim M, Levinger I. Sarcopenia definition: does it really matter? Implications for resistance training. Ageing Res Rev 2022;78:101617, doi:http://dx.doi.org/10.1016/j.arr.2022.101617.
- [26] Chang MC, Choo YJ. Effects of whey protein, leucine, and Vitamin D supplementation in patients with sarcopenia: a systematic review and meta-analysis. Nutrients 202315 (3), doi:http://dx.doi.org/10.3390/nu15030521.
- [27] Cereda E, Pisati R, Rondanelli M, Caccialanza R. Whey protein, leucine- and Vitamin-D-enriched oral nutritional supplementation for the treatment of sarcopenia. Nutrients 202214(7), doi:http://dx.doi.org/10.3390/nu14071524.
- [28] Bhasin S, Apovian CM, Travison TG, Pencina K, Moore LL, Huang G, et al. Effect of protein intake on lean body mass in functionally limited older men: a randomized clinical trial. JAMA Intern Med 2018;178(4):530–41, doi:http://dx.doi.org/10.1001/ jamainternmed.2018.0008.
- [29] De Azevedo Bach S, Radaelli R, Beck Schemes M, Neske R, Garbelotto C, Roschel H, et al. Can supplemental protein to low-protein containing meals superimpose on resistance-training muscle adaptations in older adults? A randomized clinical trial. Exp Gerontol 2022;162:111760, doi:http://dx.doi.org/10.1016/j. exger.2022.111760.
- [30] Kakehi S, Wakabayashi H, Inuma H, Inose T, Shioya M, Aoyama Y, et al. Rehabilitation nutrition and exercise therapy for sarcopenia. World J Mens Health 2022;40(1):1–10, doi:http://dx.doi.org/10.5534/wjmh.200190.
- [31] Rogeri PS, Zanella Jr. [279 TD\$DIFF] R, Martins GL, Garcia MDA, Leite G, Lugaresi R, et al. Strategies to prevent sarcopenia in the aging process: role of protein intake and exercise. Nutrients 202114(1), doi:http://dx.doi.org/10.3390/ nu14010052.
- [32] Nasimi N, Sohrabi Z, Nunes EA, Sadeghi E, Jamshidi S, Gholami Z, et al. Whey protein supplementation with or without Vitamin D on sarcopenia-related measures: a systematic review and meta-analysis. Adv Nutr 2023;14(4):762–73, doi:http://dx.doi.org/10.1016/j.advnut.2023.05.011.
- [33] Kamińska MS, Rachubińska K, Grochans , Skonieczna-Żydecka K, Cybulska AM, Grochans E, et al. The impact of whey protein supplementation on sarcopenia progression among the elderly: a systematic review and meta-analysis. Nutrients 202315(9), doi:http://dx.doi.org/10.3390/nu15092039.
- [34] Cuyul-Vásquez I, Pezo-Navarrete J, Vargas-Arriagada C, Ortega-Díaz C, Sepúlveda-Loyola W, Hirabara SM, et al. Effectiveness of whey protein supplementation during resistance exercise training on skeletal muscle mass and strength in older people with sarcopenia: a systematic review and meta-analysis. Nutrients 202315(15), doi:http://dx.doi.org/10.3390/nu15153424.
- [35] Kelley GA, Kelley KS. Systematic reviews and meta-analysis in nutrition research. Br J Nutr 2019;122(11):1279–94, doi:http://dx.doi.org/10.1017/ s0007114519002241.
- [36] Cumpston M, Li T, Page MJ, Chandler J, Welch AV, Higgins JP, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev 2019;10:Ed000142, doi:http:// dx.doi.org/10.1002/14651858.Ed000142.
- [37] Page MJ, Mckenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 2021;10(1):89, doi:http://dx.doi.org/10.1186/s13643-021-01626-4.

- [38] Page MJ, Mckenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021372:, doi:http://dx.doi.org/10.1136/bmj.n71 n71.
- [39] Sterne a C, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:l4898, doi: http://dx.doi.org/10.1136/bmj.l4898.
- [40] Nitz JC, Hourigan SR, Brown A. Measuring mobility in frail older people: reliability and validity of the Physical Mobility Scale. Australasian Journal on Ageing 2006;25 (1):31–5, doi:http://dx.doi.org/10.1111/j.1741-6612.2006.00137.x.
- [41] Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 201414(135), doi:http://dx.doi.org/10.1186/1471-2288-14-135.
- [42] Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res 2018;27 (6):1785–805, doi:http://dx.doi.org/10.1177/0962280216669183.
- [43] Lachenbruch PA. Statistical power analysis for the behavioral sciences (2nd ed.). J Am Stat Assoc 1989;84:1096–7.
- [44] Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in metaanalyses. BMJ 2003;327(7414):557–60, doi:http://dx.doi.org/10.1136/ bmi.327.7414.557.
- [45] Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj 1997;315(7109):629–34, doi:http://dx.doi.org/10.1136/ bmj.315.7109.629.
- [46] Schwingshackl L, Knüppel S, Schwedhelm C, Hoffmann G, Missbach B, Stelmach-Mardas M, et al. Perspective: NutriGrade: a scoring system to assess and judge the meta-evidence of randomized controlled trials and cohort studies in nutrition research. Adv Nutr 2016;7(6):994–1004, doi:http://dx.doi.org/10.3945/an.116.013052.
- [47] Mori H, Tokuda Y. De-training effects following leucine-enriched whey protein supplementation and resistance training in older adults with sarcopenia: a randomized controlled trial with 24 weeks of follow-up. J Nutr Health Aging 2022;26(11):994– 1002, doi:http://dx.doi.org/10.1007/s12603-022-1853-1.
- [48] Li Z, Cui M, Yu K, Zhang XW, Li CW, Nie XD, et al. Effects of nutrition supplementation and physical exercise on muscle mass, muscle strength and fat mass among sarcopenic elderly: a randomized controlled trial. Appl Physiol Nutr Metab 2021;46(5):494–500, doi:http://dx.doi.org/10.1139/apnm-2020-0643.
- [49] Rondanelli M, Cereda E, Klersy C, Faliva MA, Peroni G, Nichetti M, et al. Improving rehabilitation in sarcopenia: a randomized-controlled trial utilizing a muscle-targeted food for special medical purposes. J Cachexia Sarcopenia Muscle 2020;11(6):1535– 47, doi:http://dx.doi.org/10.1002/jcsm.12532.
- [50] Björkman MP, Suominen MH, Kautiainen H, Jyväkorpi SK, Finne-Soveri HU, Strandberg TE, et al. Effect of protein supplementation on physical performance in older people with sarcopenia-A randomized controlled trial. J Am Med Dir Assoc 2020;21(2)226–32, doi:http://dx.doi.org/10.1016/j.jamda.2019.09.006 e1.
- [51] Kemmler W, Kohl M, Jakob F, Engelke K, Von Stengel S. Effects of high intensity dynamic resistance exercise and whey protein supplements on osteosarcopenia in older men with low bone and muscle mass. final results of the randomized controlled FrOST study. Nutrients 202012(8), doi:http://dx.doi.org/10.3390/nu12082341.
- [52] Hill TR, Verlaan S, Biesheuvel E, Eastell R, Bauer JM, Bautmans I, et al. A Vitamin D, calcium and leucine-enriched whey protein nutritional supplement improves measures of bone health in sarcopenic non-malnourished older adults: the PROVIDE study. Calcif Tissue Int 2019;105(4):383–91, doi:http://dx.doi.org/10.1007/s00223-019-00581-6.
- [53] Bo Y, Liu C, Ji Z, Yang R, An Q, Zhang X, et al. A high whey protein, vitamin D and E supplement preserves muscle mass, strength, and quality of life in sarcopenic older adults: a double-blind randomized controlled trial. Clin Nutr 2019;38(1):159–64, doi: http://dx.doi.org/10.1016/j.clnu.2017.12.020.
- [54] Rondanelli M, Klersy C, Terracol G, Talluri J, Maugeri R, Guido D, et al. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr 2016;103(3):830–40, doi:http://dx.doi.org/10.3945/ajcn.115.113357.
- [55] Bauer JM, Verlaan S, Bautmans I, Brandt K, Donini LM, Maggio M, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebocontrolled trial. J Am Med Dir Assoc 2015;16(9):740–7, doi:http://dx.doi.org/ 10.1016/j.jamda.2015.05.021.
- [56] Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci 2015;70(1):57–62, doi:http://dx.doi.org/10.1093/gerona/glu103.
- [57] Pennings B, Boirie Y, Senden JM, Gijsen AP, Kuipers H, Van Loon LJ. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr 2011;93(5):997–1005, doi:http://dx. doi.org/10.3945/ajcn.110.008102.
- [58] Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol (1985) 2009;107 (3):987–92, doi:http://dx.doi.org/10.1152/japplphysiol.00076.2009.
- [59] Morton RW, Murphy KT, Mckellar SR, Schoenfeld BJ, Henselmans M, Helms E, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med 2018;52(6):376–84, doi:http://dx.doi.org/10.1136/bisports-2017-097608.
- [60] Dardevet D, Mosoni L, Savary-Auzeloux I, Peyron MA, Polakof S, Rémond D. Important determinants to take into account to optimize protein nutrition in the elderly: solutions

- to a complex equation. Proc Nutr Soc 2021;80(2):207–20, doi:http://dx.doi.org/10.1017/s0029665120007934.
- [61] Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H, et al. International Exercise Recommendations in Older Adults (ICFSR): expert consensus guidelines. J Nutr Health Aging 2021;25(7):824–53, doi:http://dx.doi.org/10.1007/ s12603-021-1665-8
- [62] Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 1990;263 (22):3029–34.
- [63] Yasuda T. Selected methods of resistance training for prevention and treatment of sarcopenia. Cells 202211(9), doi:http://dx.doi.org/10.3390/cells11091389.
- [64] Otsuka Y, Yamada Y, Maeda A, Izumo T, Rogi T, Shibata H, et al. Effects of resistance training intensity on muscle quantity/quality in middle-aged and older people: a randomized controlled trial. J Cachexia Sarcopenia Muscle 2022;13(2):894–908, doi: http://dx.doi.org/10.1002/jcsm.12941.
- [65] D'onofrio G, Kirschner J, Prather H, Goldman D, Rozanski A. Musculoskeletal exercise: its role in promoting health and longevity. Prog Cardiovasc Dis 2023;77:25–36, doi: http://dx.doi.org/10.1016/j.pcad.2023.02.006.
- [66] Cermak NM, Res PT, De Groot LC, Saris WH, Van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr 2012;96(6):1454–64, doi:http://dx.doi.org/10.3945/ ajcn.112.037556.
- [67] Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J Appl Physiol (1985) 2009;106(4):1374–84, doi:http://dx.doi.org/ 10.1152/japplphysiol.91397.2008.
- [68] Churchward-Venne TA, Murphy CH, Longland TM, Phillips SM. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans. Amino Acids 2013;45(2):231–40, doi: http://dx.doi.org/10.1007/s00726-013-1506-0.
- [69] Abete I, Konieczna J, Zulet MA, Galmés-Panades AM, Ibero-Baraibar I, Babio N, et al. Association of lifestyle factors and inflammation with sarcopenic obesity: data from the PREDIMED-Plus trial. J Cachexia Sarcopenia Muscle 2019;10(5):974–84, doi: http://dx.doi.org/10.1002/jcsm.12442.
- [70] Livshits G, Kalinkovich A. A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023;86:101852, doi:http://dx.doi.org/10.1016/j. arr.2023.101852.
- [71] Feliciano EMC, Kroenke CH, Meyerhardt JA, Prado CM, Bradshaw PT, Kwan ML, et al. Association of systemic inflammation and sarcopenia with survival in nonmetastatic colorectal cancer: results from the C SCANS study. JAMA Oncol 2017;3(12):e172319, doi:http://dx.doi.org/10.1001/jamaoncol.2017.2319.
- [72] Zhang X, Li H, He M, Wang J, Wu Y, Li Y. Immune system and sarcopenia: presented relationship and future perspective. Exp Gerontol 2022;164:111823, doi:http://dx. doi.org/10.1016/j.exger.2022.111823.

- [73] Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 2018;15(9):505–22, doi:http://dx.doi.org/ 10.1038/c41569.018-0064-2
- [74] Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol 2018;28(6):436–53, doi:http://dx.doi.org/10.1016/j.tcb.2018.02.001.
- [75] Jimenez-Gutierrez GE, Martínez-Gómez LE, Martínez-Armenta C, Pineda C, Martínez-Nava GA, Lopez-Reyes A. Molecular mechanisms of inflammation in sarcopenia: diagnosis and therapeutic update. Cells 202211(15), doi:http://dx.doi.org/10.3390/cells11152359.
- [76] Baar MP, Perdiguero E, Muñoz-Cánoves P, De Keizer PL. Musculoskeletal senescence: a moving target ready to be eliminated. Curr Opin Pharmacol 2018;40:147–55, doi: http://dx.doi.org/10.1016/j.coph.2018.05.007.
- [77] Scicchitano BM, Rizzuto E, Musarò A. Counteracting muscle wasting in aging and neuromuscular diseases: the critical role of IGF-1. Aging (Albany NY) 2009;1(5):451– 7, doi:http://dx.doi.org/10.18632/aging.100050.
- [78] Ascenzi F, Barberi L, Dobrowolny G, Villa Nova Bacurau A, Nicoletti C, Rizzuto E, et al. Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell 2019;18(3): e12954, doi:http://dx.doi.org/10.1111/acel.12954.
- [79] Tieland M, Brouwer-Brolsma EM, Nienaber-Rousseau C, Van Loon LJ, De Groot LC. Low vitamin D status is associated with reduced muscle mass and impaired physical performance in frail elderly people. Eur J Clin Nutr 2013;67(10):1050–5, doi:http:// dx.doi.org/10.1038/ejcn.2013.144.
- [80] Girgis CM, Cha KM, So B, Tsang M, Chen J, Houweling PJ, et al. Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function. J Cachexia Sarcopenia Muscle 2019;10(6):1228–40, doi:http://dx.doi.org/10.1002/ icsm.12460.
- [81] Prokopidis K, Giannos P, Katsikas Triantafyllidis K, Kechagias KS, Mesinovic J, Witard OC, et al. Effect of vitamin D monotherapy on indices of sarcopenia in community-dwelling older adults: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2022;13(3):1642–52, doi:http://dx.doi.org/10.1002/jcsm.12976.
- [82] Kato H, Suzuki H, Inoue Y, Takimoto T, Suzuki K, Kobayashi H. Co-ingestion of carbohydrate with leucine-enriched essential amino acids does not augment acute postexercise muscle protein synthesis in a strenuous exercise-induced hypoinsulinemic state. Springerplus 2016;5(1):[310_TD\$DIFF]1299, doi:http://dx. doi.org/10.1186/s40064-016-2736-x.
- [83] Liu C, Wong PY, Chung YL, Chow SK, Cheung WH, Law SW, et al. Deciphering the "obesity paradox" in the elderly: a systematic review and meta-analysis of sarcopenic obesity. Obes Rev 2023;24(2):e13534, doi:http://dx.doi.org/10.1111/obr.13534.
- [84] Li CW, Yu K, Shyh-Chang N, Jiang Z, Liu T, Ma S, et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle 2022;13(2):781–94, doi:http://dx.doi.org/10.1002/jcsm.12901.